MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements
نویسندگان
چکیده
We develop and analyze an improved version of the Multi-Stage (MUSTA) approach to the construction of upwind Godunov-type fluxes whereby the solution of the Riemann problem, approximate or exact, is not required. The new MUSTA schemes improve upon the original schemes in terms of monotonicity properties, accuracy and stability in multiple space dimensions. We incorporate the MUSTA technology into the framework of finite-volume weighted essentially non-oscillatory schemes as applied to the Euler equations of compressible gas dynamics. The results demonstrate that our new schemes are good alternatives to current centred methods and to conventional upwind methods as applied to complicated hyperbolic systems for which the solution of the Riemann problem is costly or unknown.
منابع مشابه
Development and Application of Generalized Musta Schemes
This paper is devoted to the construction of numerical fluxes for hyperbolic systems. We first present a GFORCE numerical flux, which is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first order upwind method. Then we incorporate GFORCE in the framework of the...
متن کاملFinite-volume Weno Schemes for Three-dimensional Conservation Laws
The purpose of this paper is twofold. Firstly we carry out an extension of the finite-volume WENO approach to three space dimensions and higher orders of spatial accuracy (up to eleventh order). Secondly, we propose to use three new fluxes as a building block in WENO schemes. These are the one-stage HLLC [29] and FORCE [24] fluxes and a recent multistage MUSTA flux [26]. The numerical results i...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملApplication of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws
In this paper, we study semi-discrete central-upwind difference schemes with a modified multidimensional limiting process (MLP) to solve two-dimensional hyperbolic systems of conservation laws. In general, high-order central difference schemes for conservation laws involve no Riemann solvers or characteristic decompositions but have a tendency to smear linear discontinuities. To overcome this d...
متن کامل